

THE ROLE OF THE CONFIGURATION CONTROL MODULE IN AN END TO

END RECONFIGURABLE SYSTEM
Craig Dolwin (Toshiba Research Europe Ltd, Bristol, UK; craig.dolwin@toshiba-trel.com).

Stefan Mende (Nokia Research Center, Bochum, Germany; stefan.mende@nokia.com)
Jörg Brakensiek (Nokia Research Center, Bochum, Germany; jorg.brakensiek@nokia.com)

ABSTRACT

This paper discusses the role of the Configuration Control
Module (CCM) when configuring and controlling the
physical resources in a wireless platform. We focus on the
interfaces between the CCM and higher layer entities in
the configuration plane as well as the interface to the
signal processing and communication resources it
controls.
We describe the role of the CCM as part of an end to end
reconfiguration of a wireless connection.
The CCM is responsible for the interpretation of platform
independent configuration requests into the detailed
programming and scheduling of individual signal
processing elements and communication resources. The
interfaces supported by the CCM allow multiple levels of
configuration granularity as well as supporting
proprietary adaptation algorithms and hardware
solutions. The hardware resources the CCM control
include the baseband signal processing stages, source
coding, analogue front end and RF components.

1. INTRODUCTION

In an end to end reconfigurable system, as envisaged in
the EU Project, E2R [1], the protocol stack, including the
physical layer and application layer, at either end of a
wireless link can be configured to implement multiple
Radio Access Technologies (RAT) as required to meet the
overall objective of a re-configurable system.
It is anticipated, at a system level, the configuration
algorithm will want to modify basestations and their
associated terminals to match the prevailing operating
environment. Typically this might be to address
congestion on the system or to implement improved
proprietary modem technology.
The high level network entities in such a system have to
assess the capabilities of a wide range of equipment and
decide on what the best configuration is for the E2R
system as a whole. To support this decision equipment
must be able to define its capabilities in a common
format. This will be made especially difficult at the
terminal where a range of hardware architectures will be

used. Naturally the E2R system should be designed to
operate well into the future and so will have to support
multiple generations of equipment as well as different
manufacturers.
Once a decision has been made about the configuration of
all the local basestations and associated terminals a
command must be sent to each component instructing it
to implement a new configuration. The transition to this
new configuration must be sequenced across the network
so the user is not aware of any loss of service. Due to the
potentially massive number of different hardware
platforms a central configuration entity cannot be
expected to send implementation specific configuration
instructions. So the Configuration Control Module
(CCM) is responsible for interpreting a platform
independent command into a precise set of configurations
and schedules for each resource in the physical layer.
In addition to the system level configuration described
above it is also anticipated that the equipment might
reconfigure itself. This might occur when a Radio
Resource Controller (RRC) in the protocol stack decides
to change the mode of operation e.g. in WCDMA the
RRC may alter the number and type of transport channel
or simply change the channel frequency. Alternatively an
optional Adaptation Control Unit (ACU) might decide,
based on channel quality metrics, that the level of receive
processing can be altered to ensure the power
consumption is minimised while still maintaining the
target QoS. In both these cases the change to the physical
layer can be implemented either through a direct interface
to the physical layer or via the CCM. If the interface is
via the CCM the data processing resources are scheduled
and the communication fabric configured to implement a
more power efficient solution.

2. BACKGROUND
In the present day terminal the range of configurability is
limited to those operating modes known at design time.
The system designer will analyse the overall requirements
and determine critical paths in the data flow for each
mode of operation. The designer will then define a set of
hardware resources (e.g. DSP, CPU, RAM, Hardware
accelerators, RF blocks and data busses) and associated
operating parameters such as clock frequency and power
supply voltage that will just support the highest

complexity mode. These decisions will based on a desire
to minimize cost, power consumption and development
time. Currently the constraints of power consumption and
cost mean that the physical layer will be implemented
using ROM to store DSP code and ASIC’s for
implementing logic functions. The only flexibility
allowed in the physical layer is a small area in RAM that
is allocated for patching bugs.
Once the designer has specified the resources they must
map functional blocks to specific hardware resources and
determine how and when each resource will execute the
function [4].
In a reconfigurable system the hardware is also defined at
design time but it is envisaged that some of the elements
may be programmable e.g. reconfigurable logic or RAM
based micro-processor. In an attempt to reduce the
possibility of bottlenecks between processing elements the
communication fabric (data bus, dual port memory etc)
may also be configurable.
The role of the CCM is to take a configuration request
and, like the designer working on a traditional design,
determine the best mapping of functions to resources and
then schedule when resources execute these functions.

3. MOTIVATION
Objectives
Encapsulation
The CCM must hide details of the underlying hardware
from higher layer entities such as the Configuration
Management Module (CMM). This encapsulation allows
these entities to define the optimal configuration across
the system without having to have a detailed knowledge
about each and every piece of equipment in the system.
Power Consumption
One of the main obstacles to the successful introduction
of a reconfigurable platform into the commercial market
is its tendency to increase the power consumption in the
terminal. While it can be anticipated that process
technology will improve the mW/MIPS figure [2][3] and
this maybe argued as enabling Software Defined Radio,
we should also expect the demand from the user for
higher data rates, higher system capacity and extra
services to match any possible technology improvements
[10]. Given this scenario we cannot allow the addition of
a reconfigurable solution to significantly increase the
power consumption from its non-configurable but
functionally similar predecessor.

Constraints
Real-time Operation
Many of the applications in a wireless environment will
impose hard timing deadlines e.g. echo delay in a voice
connection. In addition the Radio Access Technology
(RAT) itself will impose control deadlines to ensure the
dynamic nature of the channel is tracked.

Secure and reliable operation
In traditional equipment all modes of operation will be
verified at design time against a reference system, the
standard specifications and marketing requirements. In a
reconfigurable system with a high level of flexibility it
becomes infeasible to verify each and every possible
configuration.
In practice only individual components will be verified.
The CCM and associated framework must ensure that
these components interact in a predictable and
deterministic fashion to ensure the correct operation of
the complete system.

4. DESCRIPTION
The Configuration Control Module (CCM) works with
the Configuration Management Module (CMM) to
facilitate an agreed configuration in hardware. In general
the CMM addresses issues of functionality while the
CCM is focused on implementation [8].
The Configuration Management Module (CMM) is
responsible for the following:

1. Monitoring and discovering the capabilities and
status of the network in the vicinity of the
equipment.

2. Negotiating and selecting the appropriate
configuration.

3. Supporting general procedures, namely, software
and protocol download and installation.

4. The co-ordination of equipment to realise a new
system configuration.

In a practical implementation of a terminal the hardware
used to implement a reconfigurable platform will be
shared across multiple functional blocks so the CCM acts
as central controller. The CCM uses spatial and temporal
scheduling algorithms to determine which hardware
resource implements which function and how or when a
function gets to access to a resource.
 In this document we focus on the radio modem aspects
but the principle could be applied to other layers in the
protocol stack especially where resources are shared
between functions and hard real time constraints are
required. Figure 1 graphically describes the relationship
between hardware resources, the CMM and the CCM.
As mentioned earlier the major role of the CCM is to
supply an abstract configuration interface that allows
higher layer entities like the CMM to configure resources
without having a detailed understanding of the
underlying implementation. This interface is realized
with a ServiceAPI, which implements a message-passing
interface [6]
Primary Configuration Control Interface

This is the primary interface between the CMM and the
CCM which sets-up a new configuration; it translates the
configuration in to a set of configurations for the different
layers (application, protocol and physical layer).
 The configuration requests could be at the level of a
complete Radio Access Technology but could also be at a
higher granularity. In a high granularity description sub
components of the radio modem or protocol stack would
be defined as well as the interconnection between them.
Typically the functional components could be channel or
speech codec’s. While it is recognized that supporting
high granularity configuration descriptions will add
significantly to the workload of the CCM we aim to
create a framework which will support this approach in
the future.
Secondary Configuration Control Interface
The secondary interface between the CMM and the CCM
supplies a set of functions unique to the selected RAT.
These functions might initiate a change request from the
RRC/Radio Link Controller (RLC) in layer 3 of a
WCDMA protocol stack and would, for example, request
a change in the number of transport channels. Precisely
how this functionality is changed is implementation
dependant but could involve actually changing the system
configuration (i.e. changing allocation of resources) or by
modification of parameters within the system.
Capability Interface
The Capability Interface allows the CMM to determine
what configurations the underlying layer is able to
support. In simple cases this can be defined by the
equipment manufacturer using Class Marks. Typically a
Class Mark might indicate that the equipment can
support a specific mode in WCDMA and it would define
the maximum number of physical channels, transport
channels and associated data rates. The Class Mark
approach is limited, in a reconfigurable platform, because
it does not take into account how functions within a RAT
are implemented. So if a component, such as a turbo
decoder, was replaced to fix a bug or replaced by a lower
power version this may alter the capability of the platform
e.g. alter the maximum data rate. In addition the number
of operating scenarios in a reconfigurable platform can be
very large e.g. the equipment might be expected to
support multiple types of primary RAT while also
monitoring a range of secondary RAT’s and support
multiple speech codecs. Because all these functions will
share common resources it is quite likely that not all
combinations will be supported.
From this initial analysis it seems clear that further work
needs to be done to dynamically define the capabilities of
a reconfigurable platform.
Database Interface
The Database Interface provides access to databases in
the different layers. The database will contain layer

specific configurations and their properties. It may also
contain metrics that can be used by the configuration
plane to determine future configurations.

Auxiliary Service Gateway Interface
The Auxiliary Service gateway allows an optional
customized and proprietary interface to the CCM to be
created. Typically this might be used for adaptation or
cross-layer optimisation.
Configuration Language
For specification and setting of configuration specific
parameters for a given RAT a generic and extensible
interface description has to be used. An XML based
configuration description language is being investigated
[7]. A simplified XML parser is accessible via the
message-parsing interface (ServiceAPI) and has the
intelligence to understand the XML description and
translate it to the right function call.
Interface with Hardware Resources
To achieve low power consumption within a
reconfigurable platform the CCM configures at a signal
processing block level. A signal processing block refers to
resource configured to implement a specific function.
Each block is optimised for low power consumption and
could typically be a key functional building block in a
wireless system e.g. rake receiver, turbo decoder, FFT etc
[8]. The CCM must then link these building blocks to
create the requested system. While it is recognised that
the most power efficient implementation for such a
building block is an ASIC [4][5] we also allow these
building block to be reconfigurable components in
themselves e.g. FPGA, reconfigurable logic or a task on a
DSP. This adds another dimension to the control problem
but significantly enhances the flexibility of our system.
Two layers of abstraction are used when configuring
hardware resources see Figure 2 [12]. At the lowest level,
the Generic Physical Layer Interface, we use device
drivers, supplied by the equipment manufacturer. The
driver is responsible for installing new configurations
into hardware and creating communication channels to
stream data between processing elements. To do this it
must have detailed knowledge about control registers and
the address space. Taking an FPGA implementation of a
turbo decoder as an example the creation of a
communication channel to stream data into the turbo
decoder might involve reserving a DMA channel to
transfer data from a buffer in global memory into a FIFO
implemented on the FPGA. The implementation of the
turbo decoder itself would require the bit stream to be
loaded into the FPGA memory. Typically device drivers
could be embedded in ROM or alternatively could be
downloaded into RAM.

The next level of abstraction is at the Generic Resource
Interface and contains resource driver’s specific to a
RAT. A resource driver allows functional element to be
configured without the higher layer having to know about
the implementation detail. This allows the
implementation resource to change without affecting the
high layer configuration entities e.g. the turbo decoder
might need to be configured to use a specific set of
polynomials. This would be requested by calling the
setPolynomial method in the TurboDecoderInterface and
because this had previously been associated with the
FPGA resource it would be realized by the method in
TurboDecoder_Xilinx_FPGA_Driver. In figure 2 we use
a UML diagram to identify the relationship between the
generic resource interface and the generic physical
interface.

5. SCENARIO
End-to-End reconfigurability with respect to the physical
layer will imply a set of different scenarios, which are of
interest and importance. Among others, these are
basically [11]

q Adaptation of the signal processing chain to
environmental changes in order to provide a
constant QoS for the connection.

q Inter RAT Handover (e.g. UMTS to WLAN)
q Intra RAT Handover (e.g. UMTS/FDD to

UMTS/TDD)
q Service Addition (e.g. adaptive multi-homing)
q Service Enhancement (this is mainly on the

application layer, e.g. replacement of a video
codec)

q Bug Fixing and functionality enhancement of the
implemented signal processing chain

Reconfiguration can be initiated either from the
network/operator side or from the user/application side.
Even if there are slight differences during the
reconfiguration setup, the basic reconfiguration process is
independent of the initiator.
The reconfiguration process is described in the following,
taking a network initiated inter-RAT handover from
WLAN to WCDMA as an example.

1. A network management entity is questioning the
terminal on its capability to operate WLAN
signal processing. This is done using the
capability interface of the service API.

2. The terminal will look into its local database for
information on reconfiguration scripts for the
WLAN processing.

3. The terminal will provide feedback on its
WCDMA capability e.g. in a kind of yes/no
answering scheme.

4. The management entity may ask for additional
detailed capabilities, e.g. supported modes,

frequencies, code rates, number of transport
channels, etc. This could be done in a kind of
interview mode.

5. If the required functionality is not available
inside the terminal, a software upgrade is
necessary. The software download from a
software database (e.g. at the manufacturer side)
will be done using the database interface of the
service API. Available software versions and
library functions will be exchanged during this
process.

6. As all required configuration data is available,
the management entity will initiate the
reconfiguration using the primary configuration
interface of the service API. In order to
synchronize the reconfiguration within the
different layers and also together with the
network, a time stamp could be given.

7. Additional fine granular configurations to
standard specific options will be done using the
secondary configuration interface of the service
API. Typically the RRC/RLC, in the control
plane of the protocol stack, will be connected to
this interface.

Evaluating the capabilities on the terminal side is a
complex process, as the current system configuration has
to be taken into account (e.g. other services/applications,
which are currently running). Therefore a detailed
analysis of the load and usage of the different hardware
resources is required, taking the additional processing
and communication load of the new target system into
account. This includes the feedback from the spatial and
temporal scheduler as well as potential analysis of
mapping alternatives. Besides this dynamic feedback
analysis, a static one may be available as a first stage,
which is based on predefined database entries (e.g. as
defined from the manufacturer). The static analysis will
therefore always be conservative in providing capability
feedback.
The configuration of the hardware resources is done in a
generic way, dependent on their capabilities.

q Resources having their own operating system or
firmware will be responsible for storing and
operating the new configuration.

q Other resources will be configured from the
dedicated resource drivers. This may include e.g.
download of a bit stream to an FPGA, store
register values.

Specific attention has to be given to the synchronization
of the reconfiguration start, especially if the resource is
shared between different applications. This is to ensure
that any reconfiguration does not effect the ongoing
processing.

6. CONCLUSION
This paper has outlined the work currently ongoing in
WP4 of the European Integrated Project, E2R. We have
described how the Configuration Control Module (CCM)
works within the configuration plane to manage the
underlying hardware resources. The focus of this work is
to develop a scalable control framework that does not
constrain the equipment manufacturer to a given
hardware architecture but still supports low power
operation and high levels of configurability. This is
achieved by using a set of optimised processing blocks
which can be dynamically connected and configured to
implement the requested overall configuration.
A number of issues still need to be resolved and these
include:
§ How best to define the capabilities of a

reconfigurable platform.
§ What level of granularity should the

configuration description be at?
§ How do we validate a configuration?

7. ACKNOWLEDGMENT

This work is being performed within the framework of
EU funded project E2R. The authors would like to
acknowledge the contributions of their colleagues from
the E2R consortium

8. REFERENCES
[1] E2R home page: http://www.e2r.motlabs.com/e2r
[2] Gene Frantz, “Digital Signal Processing Trends”, IEEE

Micro, vol. 20, no. 6, pp. 52-59. Nov/Dec 2000
[3] Ralf E. Schuh, Peter Eneroth and Peter Karlsson. “Multi-

Standard Mobile Terminals”, IST Mobile & Wireless
Telecom. Summit'02, pp 174-178, June 2002

[4] H.Blume, H. Hubert, H. T. Feldamper, T. G. Noll, “Model-
based Exploration of the Design Space for Heterogeneous
Systems on Chip”, ASAP’02, pp29, 17th-19th July 2002.

[5] H. T. Feldkamper, T. Gemmeke, H. Blume, T. G. Noll,
“Analysis of reconfigurable and heterogeneous architectures
in the communication domain”, ICCSC2002, St Petersburg,
Russia, 28th June 2002

[6] Home page for Message Passing Interface standard,
http://www-unix.mcs.anl.gov/mpi/

[7] A basic description of XML,
http://nyphp.org/content/presentations/pvsxml/xml-
sample.php

[8] T. Farnham, C. Dolwin, S. Zhong, R. Atukula, U. Lücking,
S. Mende, J. Brakensiek, S. Buljore, N. Alonistioti, F.
Foukalas, A. Glentis, P. Magdalinos, P. Demestichas, V.
Stavroulaki, “E2R Equipment Management and Control”,
Proc. of the E2R workshop on Reconfigurable mobile
systems and networks beyond 3G, Barcelona, 5th September
2004.

[9] Manabu Mukai et al, “A Software Oriented Modem
Architecture for 3G Terminal”, IEEE VTC 2003 Fall.

[10] Jan M. Rabaey, “System on chip : A case for heterogeneous
architectures”,
http://bwrc.eecs.berkeley.edu/People/Faculty/jan/presentation
s/architecture.pdf

[11] J. Brakensiek, B. Steinke, S. Walter, T. Burger, T.
Dellsperger, C. Dolwin, R. Burgess, A. Bisiaux, M. Bronzel,
H. Seidel, M. Halimic, “Requirement and Scenario
Definition”, Public E2R Deliverable IST-2003-507995/
E2R/WP4/D4.1/040630

[12] J. Brakensiek, D. Lenz, B. Steinke, M. Halimic, C. Dolwin,
S. Naveen, A. Bisiaux, “Hardware Abstraction in an End-to-
End Reconfigurable Device”, Proc. of WWRF WG6
Meeting, June 2004, Oslo.

Figure 1 Relationship between CMM, CCM and resources

Figure 2 Class diagram illustrating hardware abstraction layers

Protocol
Stack

Physical
Layer

Application
Layer

Configuration Control Module

Configuration Port

Control Port Data Port

Service API
Primary Configuration IF Secondary Configuration IF AuxSvc IFCapability IF Database IF

Hardware
Resources

A common set of resources can be used
between modules

Resource Configurations
Scheduling
Information

Physical Layer Control Commands
from RRC
e.g. Create Transport Channel,
Change Frequency

Commands from the Protocol stack
can be mapped directly to parameter
settings in the Physical Layer /
Application Layer or trigger a change
in configuration managed by the
CCM

CMM_Evnt

CMM_Prof
Configuration Profile

CMM_Inst
Installation
Recovery

CMM_DMP
Decision

Making and
Policy

Enforcement

CMM_IFNss

CMM_MD
Monitor and Discovery

CMM_NS
Reconfiguration
Negotiation &

selection
CMM_Dwnld
Configuration

Download

CMM_Sec
Configuration Security

CMM_Evnt: CMM Event handler

Configuration Management Module

